Sequences of algebraic integers and density modulo 1 par

نویسنده

  • Roman URBAN
چکیده

We prove density modulo 1 of the sets of the form {μλξ + rm : n,m ∈ N}, where λ, μ ∈ R is a pair of rationally independent algebraic integers of degree d ≥ 2, satisfying some additional assumptions, ξ 6= 0, and rm is any sequence of real numbers. Roman Urban Institute of Mathematics Wroclaw University Plac Grunwaldzki 2/4 50-384 Wroclaw, Poland E-mail : [email protected] Manuscrit reçu le 17 aout 2006. Mots clefs. Density modulo 1, algebraic integers, topological dynamics, ID-semigroups. Research supported in part by the European Commission Marie Curie Host Fellowship for the Transfer of Knowledge “Harmonic Analysis, Nonlinear Analysis and Probability” MTKDCT-2004-013389 and by the MNiSW research grant N201 012 31/1020.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The almost PV behavior of some far from PV algebraic integers

This paper studies divisibility properties of sequences defined inductively by n,=l, a n+1 =Sa,+tLea,], where s, t are integers, and 0 is a quadratic irrationality. Under appropriate hypotheses (especially that s + t0 be a PV-number) it is proved that the highest power of A that divides a,, where A is the discriminant of 19, tends to infinity. This is noteworthy in that truncation would normall...

متن کامل

Profinite automata

Many sequences of p-adic integers project modulo p to p-automatic sequences for every α ≥ 0. Examples include algebraic sequences of integers, which satisfy this property for every prime p, and some cocycle sequences, which we show satisfy this property for a fixed p. For such a sequence, we construct a profinite automaton that projects modulo p to the automaton generating the projected sequenc...

متن کامل

Factoring Generalized Repunits

Twenty-five years ago, W. M. Snyder extended the notion of a repunit Rn to one in which for some positive integer b, Rn(b) has a b-adic expansion consisting of only ones. He then applied algebraic number theory in order to determine the pairs of integers under which Rn(b) has a prime divisor congruent to 1 modulo n. In this paper, we show how Snyder’s theorem follows from existing theory pertai...

متن کامل

On Periods modulo a Prime of Some Classes of Sequences of Integers

Theorem 1: Let un, n > 0, be the general term of a given sequence of integers and define the transformation T^yk)(un) as T^xyJc){un) = xun+lc +yun for every n > 0, A: being a positive integer. Then, if x mdy are nonzero integers and there exists a positive prime number/? which divides T(x,y,k)(n) f° every n>0 and is relatively prime to x, the distribution of the residues of (un) modulo p is eit...

متن کامل

p-ADIC ASYMPTOTIC PROPERTIES OF CONSTANT-RECURSIVE SEQUENCES

In this article we study p-adic properties of sequences of integers (or p-adic integers) that satisfy a linear recurrence with constant coefficients. For such a sequence, we give an explicit approximate twisted interpolation to Zp. We then use this interpolation for two applications. The first is that certain subsequences of constant-recursive sequences converge p-adically. The second is that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007